

Electrophoretic Mobility

$$\mu = \frac{q}{6\pi r \ \eta}$$

- q charge (fixed for strong acids and bases pH dependant for weak acid and bases)
- 6 m effective ionic volume (N.B. complexation and counterion)
- η viscosity

Detection Limits (Mols/inj)

• Optical

 $- Absorption & 10^{-16} \text{ to } 10^{-13} \\ - Indirect Absorption & 10^{-14} \text{ to } 10^{-11} \\ - Laser induced Fluorescence & 10^{-20} \text{ to } 10^{-17} \\ \end{array}$

-Indirect LIF 10 -17 to 10 -15

• Mass spectometric 10⁻¹⁷ to 10⁻⁸

General Approaches to Chiral CE

- Cavity or Inclusion-Complex Based Chiral Selectors
- A Cyclodextrins
- B Crown Ethers
- C Coiled Polysaccharides

Capillary Gel Electrophoresis

- Gels serve as a *molecular sieve* for size based separation
- Biopolymers are run under *denaturing* conditions
- Plot of log M.W. vs. migration time(or mobility) shows a linear relationship
- Generally use *electrokinetic* injections to protect the gel against extrusion

Figure 1. SDS-CGE of six protein standards on a 47-cm length (40 cm to detector) × 100 μm i.d. capillary. Run buffer, 100 mM TRIS-CHES, pH 8.8, 0.1% SDS. Sample buffer, 60 mM TRIS-HCL, pH 6.6. Sample injection by pressure for 60 s. Peaks: (1) α-lactalbumin; (2) soybean trypsin inhibitor; (3) carbonic anhydrase; (4) ovalbumin; (5) bovine serum albumin; (6) phosphorylase B. A tracking dye, Orange G (OG), was added to the sample. Protein concentration, 0.1 mg/mL. Detection, 214 mm. Run temperature, 20°C. Field strength, 300 V/cm. Current, 25-30 μA.